《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于EMD和ELM相結(jié)合的門診量預(yù)測模型研究
基于EMD和ELM相結(jié)合的門診量預(yù)測模型研究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 6期
樊沖
(錦州市大數(shù)據(jù)管理中心,遼寧錦州121000)
摘要: 針對門診量波動幅度較大的時間序列預(yù)測問題,先采用經(jīng)驗?zāi)B(tài)分解(EMD)將非線性較強的原始數(shù)據(jù)進行分解,然后通過極限學(xué)習機(ELM)將分解后的各個序列分量進行建模,最后將各個分量的預(yù)測值相加得出最終結(jié)果。將BP神經(jīng)網(wǎng)絡(luò)、ELM兩個單一模型與EMDELM組合模型進行對比驗證,實驗結(jié)果表明組合模型的精準度明顯好于兩個單一模型。
中圖分類號:TP391
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.06.016
引用格式:樊沖.基于EMD和ELM相結(jié)合的門診量預(yù)測模型研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(6):97-102.
Research on outpatient volume prediction model based on the combination of EMD and ELM
Fan Chong
(Jinzhou Big Data Management Center,Jinzhou 121000,China)
Abstract: Aiming at the time series prediction with largefluctuations of outpatient volume, firstly, it is necessary to decompose original data with strong nonlinearity by Empirical Mode Decomposition (EMD), model these decomposed sequence components by Extreme Learning Machine (ELM), and then sum up the prediction volume of these sequence components and finally draw a conclusion. The single models of BP neural network and ELM were compared and verified with the combined model of EMDELM, and it was found that the accuracy of the combined model was significantly better than that of the single models according to the experimental outcomes.
Key words : prediction model; time series; prediction of outpatient volume; Extreme Learning Machine(ELM); Empirical Mode Decomposition(EMD)

0    引言

門診工作是現(xiàn)代醫(yī)療工作中非常重要的一環(huán),同時日常的門診量也反映著醫(yī)院實時的運行狀態(tài),準確地對醫(yī)院門診量進行有效預(yù)測,既能為醫(yī)院管理人員進行資源合理配置提供重要參考,也能為醫(yī)院的運營管理起到積極的作用。

門診量預(yù)測本質(zhì)上是一種時間序列的預(yù)測,而大多時間序列內(nèi)是存在不穩(wěn)定因素的,其中包括就近就醫(yī)、診療質(zhì)量、重點科室知名度、服務(wù)質(zhì)量、就醫(yī)環(huán)境等,這些因素都難以量化。以往研究者對門診量的預(yù)測研究只考慮針對一種或幾種因素,沒有對門診量時間序列數(shù)據(jù)進行挖掘,這與深度挖掘技術(shù)在醫(yī)療行業(yè)的研究應(yīng)用較少有關(guān)。



本文詳細內(nèi)容請下載:http://www.viuna.cn/resource/share/2000005381




作者信息:

樊沖

(錦州市大數(shù)據(jù)管理中心,遼寧錦州121000)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 最近中文字幕免费版在线 | 日韩欧美在线看 | 456极品嫩模在线视频 | 福利综合网 | 欧美禽交| 欧美在线精品一区二区三区 | 性大特级毛片视频 | 亚洲欧美国产视频 | 欧美日韩中文字幕在线视频 | 亚洲欧美日韩中文字幕在线不卡 | 888xxxx免费视频 | 国产亚洲精品激情都市 | 成人免费观看黄a大片夜月 成人免费观看www视频 | 肉动漫成人免费无遮羞 | 免费亚洲成人 | 黄色免费大片 | 日日夜夜精品视频 | 又黄又猛又爽大片免费视频 | 国产草比 | sss欧美华人整片在线观看 | 天天干女人 | 午夜男人剧场 | 香蕉久久久 | 一级网 | 久久国产成人精品国产成人亚洲 | 中国特级毛片 | 99爱在线视频这里只有精品 | 国产成人精选免费视频 | 日本无遮挡亲吻膜下面免费 | 免费高清资源黄网站在线观看 | 亚洲一区二区三区在线免费观看 | 精品国产一二三区 | 快播制服丝袜 | 国内一卡2卡三卡四卡在线 国外欧美一区另类中文字幕 | 最近中文字幕在线播放 | 国产东北男同志videos网站 | 色视频网站大全免费 | 欧美性一区二区三区 | 成人短视频在线 | 美女一级ba大片免色野外 | 欧美网站在线看 |