現代的數控系統雖然尚未達到智能化很高的程度,但已經具備了較強的自診斷功能。能隨時監視數控系統的硬件和軟件的工作狀況。一旦發現異常,立即在CRT上報警信息或用發光二極管批示出故障的大致起因。利用自診斷功能,也能顯示出系統與主機之間接口信號的狀態,從而判斷出故障發生在機械部分還是數控系統部分,并批示出故障的大致部位。這個方法是當前維修時最有效的一種方法。
這是一種簡單易行的方法,也是現場判斷時最常用的方法之一。所謂交換法就是在分析出故障大致起因的情況下,維修人員可以利用備用的印刷線路板、模板,集成電路芯片或元器件替換有疑點的部分,從而把故障范圍縮小到印刷線路板或芯片一級。它實際上也是在驗證分析的正確性。
所謂轉移法就是將CNC系統中具有相同功能的二塊印刷線路板、模塊、集成電路芯片或元器件互相交換,觀察故障現象是否隨之轉移。藉此,可迅速確定系統的故障部位。這個方法實際上就是交換法的一種。因此,有關注意事項同交換法所述。
眾所周知,數控參數能直接影響數控機床的功能。參數 通常是存放在磁泡存儲器或存放在需由電池保持的CMOS RAM中,一旦電池不足或由于外界的某種干擾等因素,會使個別參數丟失或變化,發生混亂,使機床無法正常工作。此時,通過核對、修正參數,就能將故障排除。當機床長期閑置工作時無緣無故地出現不正常現象或有故障而無報警時,就應根據故障特征,檢查和校對有關參數。另外,經過長期運行的數控機床,由于其機械傳動部件磨損,電氣無件性能變化等原因,也需對其有關參數進行調整。有些機床的故障往往就是由于未及時修改某些不適應的參數所致。當然這些故障都是屬于故障的范疇。
當系統出現的故障表現為若有若無時,往往可用敲擊法檢查出故障的部位所在。這是由于CNC系統是由多塊印刷線路板組成,每塊板上又有許多焊點,板間或模塊間又通過插接件及電纜相連。因此,任何虛焊或接觸不良,都可能引起故障。當用絕緣物輕輕敲打有虛焊及接觸不良的疑點處,故障肯定會重復再現。
CNC系統經過長期運行后元器件均要老化,性能會變壞。當它們尚未完全損壞時,出現的故障變得時有時無。這時可用熱吹風機或電烙鐵等來局部升溫被懷疑的元器件,加速其老化,以便徹底暴露故障部件。當然,采用此法時,一定要注意元器件的溫度參數等,不要將原來是好的器件烤壞。
根據CNC系統的組成原理,可從邏輯上分析各點的邏輯電平和特征參數(如電壓值或波形),然后用萬用表、邏輯筆、示波器或邏輯分析儀進行測量、分析和比較,從而對故障定位。運用這種方法,要求維修人員必須對整個系統或每個電路的原理有清楚的、較深的了解。
除了以上常用的故障檢查測試方法外,還有拔板法,電壓拉偏法,開環檢測法以及在上章中曾提出的診斷方法等多種。這些檢查方法各有特點,按照不同的故障現象,可以同時選擇幾種方法靈活應用,對故障進行綜合分析,才能逐步縮小故障范圍,較快地排除故障。當數控系統出現報警發生故障時,維修人員不要急于動手處理,而應多進行觀察和試驗。
這是維修人員取得第一手材料的一個重要手段。一方面要向操作者調查,詳細詢問出現故障的全過程,查看故障記錄單,了解發生過什么現象,曾采取過什么措施等;另一方面,要對現場要做細致的勘查。從系統的外觀到系統內部各印刷線路板都應細心地察看是否有異常之處。在確認系統通電無危險有情況下,方可通電,觀察系統有何異常,CRT顯示的內容等。
當前的CNC系統智能化程度都比較低,系統尚不能自動診斷出發生故障的確切原因。往往是同一報警號可以有多種起因,不可能將故障縮小到具體的某一部件。因此,在分析故障的起因時,一定要思路開闊。往往有這種情況,自診斷出系統的某一部分有故障,但究其起源,卻不在數控系統,而是在機械部分。所以,無論是CNC系統,機床強電,還是機械、液壓、氣路等,只要有可能引起該故障的原因,都要盡可能全面地列出來,進行綜合判斷和篩選,然后通過必要的試驗,達到確診和最終排除故障的目的。