《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于深度密集連接控制網絡的單幅圖像去雨
基于深度密集連接控制網絡的單幅圖像去雨
2020年電子技術應用第12期
李 蔚,安鶴男,劉 佳,涂志偉,張昌林
深圳大學 電子與信息工程學院,廣東 深圳518061
摘要: 雨線造成的圖像質量退化嚴重影響圖像有效應用及計算機視覺算法,因此圖像去雨十分必要。目前主流的深度學習去雨方法僅對單一尺寸的雨線有效,并且存在雨線去除不完全、模糊背景等問題。針對以上難點,提出了基于深度密集連接控制網絡的單幅圖像去雨算法。通過引入多尺度特征網絡加強對不同尺寸雨線的提取能力,引入注意力機制模塊提升對有雨區域的關注度,引入密集連接控制網絡以完整表示雨線特征。實驗表明,該方法在合成數據集以及真實數據集對比主流去雨方法效果均有提升。
中圖分類號: TP183
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200400
中文引用格式: 李蔚,安鶴男,劉佳,等. 基于深度密集連接控制網絡的單幅圖像去雨[J].電子技術應用,2020,46(12):48-52.
英文引用格式: Li Wei,An Henan,Liu Jia,et al. Deep controlled dense connection network for single image deraining[J]. Applica-
tion of Electronic Technique,2020,46(12):48-52.
Deep controlled dense connection network for single image deraining
Li Wei,An Henan,Liu Jia,Tu Zhiwei,Zhang Changlin
College of Electronics and Information Engineering,Shenzhen University,Shenzhen 518061,China
Abstract: Image quality degradation caused by rain streaks seriously affects the effective application of image and computer vision algorithm, so image deraining is very necessary. At present, mainstream deraining methods based on deep learning are only effective for single size rain streaks, and there are problems such as incomplete rain streaks removal and fuzzy background. Aiming at these difficulties, a single image deraining algorithm based on deep controlled dense connection network is presented. Through the introduction of multi-scale block, the ability to extract rain streaks of different sizes was enhanced. And attention mechanism module was injected to pay more attention to raining areas. What is more, controlled dense connection block was also introduced to fully represent the rain streaks characteristics. Experiments show that the proposed method outperforms some mainstream methods both on the synthetic dataset and the real dataset.
Key words : single image deraining;deep learning;convolution neural network;dense connection

0 引言

    在雨天所采集的圖像數據往往伴隨著明顯的質量退化,這對目標檢測、目標跟蹤等視覺算法造成極大影響。因此,去雨算法成為了當下研究熱點之一。

    相比于傳統的圖像處理方法,深度學習在去雨效果上已經有了長足進步,但還是不能很好地解決完整去除雨線的同時不丟失原有細節信息這一問題。由于雨線的大小、形狀不盡相同,單一的網絡結構可能只對某一尺度的雨線敏感,這將導致去雨后圖片仍有雨線殘留,去雨效果不佳。而且圖像中往往包含大量細節信息,如條紋、圖案等,網絡無法準確區分特征是否屬于背景細節,導致這些“偽雨線”被去除,圖像丟失有效內容。這將極大影響圖像去雨質量。

    針對以上難點,本研究提出了基于深度密集連接控制網絡的圖像去雨算法。該網絡通過卷積模塊之間的密集連接融合不同層次的細節特征,能夠充分提取雨線信息。基于特征約束的思想,將控制特性引入到網絡中,控制不同階段特征的表達程度,從而更好地模擬雨線映射,取得理想的去雨效果。




本文詳細內容請下載:http://www.viuna.cn/resource/share/2000003252




作者信息:

李  蔚,安鶴男,劉  佳,涂志偉,張昌林

(深圳大學 電子與信息工程學院,廣東 深圳518061)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚久久伊人精品青青草原2020 | 福利片在线播放 | 国产日韩不卡免费精品视频 | 免费一级欧美片在线观看 | 亚洲综合激情小说 | a及毛片| 亚洲国产一区二区三区综合片 | 国产欧美成人一区二区三区 | 欧美 日韩 中文字幕 | 成人国产精品免费视频不卡 | 一本大道香蕉高清视频在线 | 欧美日韩在线观看一区二区 | 一级做a爰性色毛片免费 | 日本xxxxx高清免费观看 | 又色又爽又黄的网站 | 国产一区系列在线观看 | 国产日韩欧美视频在线观看 | 大香人蕉免费视频75 | 免费簧网站永久在线播放国产 | 精品视频免费 | 黄色福利网址 | 久久综合婷婷香五月 | 欧美日韩国产在线人 | 午夜资源| 国产新疆成人a一片在线观看 | 动漫精品专区一区二区三区不卡 | 欧美性猛交xxx猛交 欧美性生交xxxxx久久久 | 欧美一级www| 久久精品国产精品亚洲精品 | 黄色大片久久 | 久久精品综合视频 | 看片在线 | 亚洲综合日韩中文字幕v在线 | 日韩美女色高清在线看 | 欧美一区二区三区在线观看不卡 | 可以看的黄色网址 | 国产精品久久人人做人人爽 | 国产偷国产偷高清视频 | 三级黄色免费网站 | 下面一进一出好爽视频 | 日韩一区二区在线观看 |