文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.01.009
引用格式: 鄭佑順,林珊玲,林志賢,等。 基于殘差結構和幻象模塊的垃圾圖片分類算法[J].信息技術與網絡安全,2021,40(1):50-55.
0 引言
根據中國城鄉建設統計年鑒統計,我國城市生活垃圾的產生量由1979年的0.25億噸增至2018年的2.28億噸[1]。隨著人民生活水平的提高,垃圾產生量仍在上升。有效回收生活垃圾成為急需解決的問題,這對于可持續發展具有重大的意義。垃圾分類是回收的前提。目前,我國垃圾分類主要以人工分揀為主,存在勞動強度大、效率低等缺點。實現垃圾分揀的智能化與自動化具有重要的意義。垃圾圖片分類算法有助于實現垃圾分揀的智能化與自動化。
近年來,越來越多的專家學者對垃圾分類算法進行了研究與實踐。吳建等人使用傳統的計算機視覺方法,手動提取特征,識別實驗室廢物垃圾[2]。黃惠玲等人提出基于HSV的閾值分割算法和K均值聚類算法識別建筑垃圾圖像[3]。黃興華等人提出基于紋理特征融合的道路垃圾圖像識別算法[4]。向偉等人提出改進的CaffeNet網絡識別水面垃圾[5]。但是缺乏針對生活垃圾圖片分類算法的研究。目前,我國各城市全面推行垃圾分類制度,基本建立相應的法律法規和標準體系,將生活垃圾細分,大致可分為可回收垃圾、有害垃圾、廚余垃圾和其他垃圾四大類。針對我國垃圾分類現狀,收集制作了小型生活垃圾數據集,選取經典網絡ResNet18[6]作為基礎網絡,使用GhostNet[7]的幻象模塊代替殘差學習單元中的普通卷積,減少網絡的參數量,提出基于幻象殘差結構的垃圾圖片分類算法。
本文詳細內容請下載:http://www.viuna.cn/resource/share/2000003317
作者信息:
鄭佑順1,2,林珊玲2,3,林志賢1,2,周雄圖1,2,郭太良1,2
(1.福州大學 物理與信息工程學院,福建 福州350116;2.中國福建光電信息科學與技術創新實驗室,福建 福州350116;3.福州大學 先進制造學院,福建 泉州362200)