《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于殘差結構和幻象模塊的垃圾圖片分類算法
基于殘差結構和幻象模塊的垃圾圖片分類算法
信息技術與網絡安全
鄭佑順1,2,林珊玲2,3,林志賢1,2,周雄圖1,2,郭太良1,2
(1.福州大學 物理與信息工程學院,福建 福州350116;   2.中國福建光電信息科學與技術創新實驗室,福建 福州350116;   3.福州大學 先進制造學院,福建 泉州362200)
摘要: 垃圾圖片分類算法對于垃圾分揀的智能化和自動化具有重要的意義,針對我國垃圾分類現狀,收集制作了小型生活垃圾數據集,提出基于殘差結構和幻象模塊的垃圾圖片分類算法。使用幻象模塊代替ResNet18的普通卷積,在不降低網絡性能的同時減少了網絡的參數量。采用數據增強方法擴充訓練數據,防止過擬合。實驗結果表明,改進后網絡的參數量減少了46%,識別精度提高了1%。
中圖分類號: TP391.4
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.01.009
引用格式: 鄭佑順,林珊玲,林志賢,等。 基于殘差結構和幻象模塊的垃圾圖片分類算法[J].信息技術與網絡安全,2021,40(1):50-55.
Garbage image classification algorithm based on residual structure and ghost module
Zheng Youshun1,2,Lin Shanling2,3,Lin Zhixian1,2,Zhou Xiongtu1,2,Guo Tailiang1,2
(1.College of Physics and Information Engineering,Fuzhou University,Fuzhou 350116,China;   2.Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350116,China;   3.School of Advanced Manufacturing,Fuzhou University,Quanzhou 362200,China)
Abstract: Garbage image classification algorithm is of great significance for the intelligentization and automation of garbage sorting. According to the status quo of garbage classification in China, this paper created a small household waste dataset and proposed a garbage image classification algorithm based on residual structure and ghost module. The algorithm used ghost module instead of ordinary convolution, reducing the number of ResNet18 network parameters without reducing performance. The data enhancement method was used to expand the training data to prevent overfitting. The experimental results show that the number of parameters in the improved network is reduced by 46% and the recognition accuracy is improved by 1%.
Key words : garbage image classification algorithm;residual structure;ghost module;ResNet18;data enhancement

0     引言

  根據中國城鄉建設統計年鑒統計,我國城市生活垃圾的產生量由1979年的0.25億噸增至2018年的2.28億噸[1]。隨著人民生活水平的提高,垃圾產生量仍在上升。有效回收生活垃圾成為急需解決的問題,這對于可持續發展具有重大的意義。垃圾分類是回收的前提。目前,我國垃圾分類主要以人工分揀為主,存在勞動強度大、效率低等缺點。實現垃圾分揀的智能化與自動化具有重要的意義。垃圾圖片分類算法有助于實現垃圾分揀的智能化與自動化。

  近年來,越來越多的專家學者對垃圾分類算法進行了研究與實踐。吳建等人使用傳統的計算機視覺方法,手動提取特征,識別實驗室廢物垃圾[2]。黃惠玲等人提出基于HSV的閾值分割算法和K均值聚類算法識別建筑垃圾圖像[3]。黃興華等人提出基于紋理特征融合的道路垃圾圖像識別算法[4]。向偉等人提出改進的CaffeNet網絡識別水面垃圾[5]。但是缺乏針對生活垃圾圖片分類算法的研究。目前,我國各城市全面推行垃圾分類制度,基本建立相應的法律法規和標準體系,將生活垃圾細分,大致可分為可回收垃圾、有害垃圾、廚余垃圾和其他垃圾四大類。針對我國垃圾分類現狀,收集制作了小型生活垃圾數據集,選取經典網絡ResNet18[6]作為基礎網絡,使用GhostNet[7]的幻象模塊代替殘差學習單元中的普通卷積,減少網絡的參數量,提出基于幻象殘差結構的垃圾圖片分類算法。






本文詳細內容請下載:http://www.viuna.cn/resource/share/2000003317





作者信息:

鄭佑順1,2,林珊玲2,3,林志賢1,2,周雄圖1,2,郭太良1,2

(1.福州大學 物理與信息工程學院,福建 福州350116;2.中國福建光電信息科學與技術創新實驗室,福建 福州350116;3.福州大學 先進制造學院,福建 泉州362200)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 日韩精品网址 | 顶级毛片在线手机免费看 | 一级做a爱片特黄在线观看yy | 不卡视频在线播放 | 亚洲欧美性视频 | 午夜视频免费在线 | 深夜福利91 | 莉莉私人免费影院观看网站 | 丝袜天堂 | 欧美亚洲国产成人高清在线 | 黄色按摩视频 | 国模在线视频一区二区三区 | 国产乱人乱精一区二区视频密 | 99久久综合狠狠综合久久 | 欧美一区二区三区久久久 | 国产男女猛烈无遮档免费视频网站 | 伊人网中文字幕 | 国产黄在线观看免费观看软件视频 | 欧美成人性视频在线黑白配 | 一 级 黄 色 片生活片 | 国产欧美亚洲精品第一页久久肉 | 小明永久视频免费播放 | 色综合97天天综合网 | 最近高清中文字幕2019 | 亚洲欧洲精品成人久久曰 | 欧美成人精品一区二区 | 欧美日韩精品一区二区三区不卡 | 精品x8x8视频 | 久久精品免视看国产明星 | 欧美精品免费专区在线观看 | 久久人人爽人人爽人人小说 | 最近中文字幕完整视频高清1 | 91插插插插插 | 456亚洲人成影院在线观 | 国产欧美日本在线 | 国产成人精品怡红院 | 亚洲国产伦理 | 天天操天天操天天射 | 男女晚上黄羞羞视频播放 | 老子影院午夜伦不卡不四虎卡 | 日本综合在线观看 |