《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 用于自動視力檢測的手勢識別方法研究
用于自動視力檢測的手勢識別方法研究
信息技術與網絡安全
何啟莉,何家峰,郭 娟
(廣東工業大學 信息工程學院,廣東 廣州510006)
摘要: 對于自動視力檢測系統,手勢識別是關鍵問題,但是采用傳統卷積神經網絡模型識別手勢存在過擬合、計算量大等問題。提出了一種GR-AlexNet模型,對AlexNet網絡模型進行了適應性修改和優化:為了加快計算速度,用7×7、5×5、1×1的三個小卷積核替代原來的11×11的大卷積核,并刪除LRN層和一個全連接層;為了減輕過擬合效應,在每次卷積后都加上一個Dropout優化。對同一數據集分別使用LeNet模型、AlexNet模型、VGG16模型與GR-AlexNet模型進行對比實驗。實驗表明GR-AlexNet模型在識別準確率上較傳統的模型有一定的提高,能抑制過擬合現象,并且具有更快的訓練速度。
中圖分類號: TP391.41
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.03.006
引用格式: 何啟莉,何家峰,郭娟. 用于自動視力檢測的手勢識別方法研究[J].信息技術與網絡安全,2021,40(3):32-37,47.
Research on gesture recognition method for automatic vision detection
He Qili,He Jiafeng,Guo Juan
(School of Information Engineering,Guangdong University of Technology,Guangzhou 510006,China)
Abstract: For automatic vision detection systems, gesture recognition is a key issue, but the traditional convolutional neural network model to recognize gestures has problems such as over-fitting and large amount of calculation. This paper proposes a GR-Alexnet model, which adaptively modifies and optimizes the Alexnet network model. In order to speed up the calculation, three small convolution kernels of 7×7, 5×5, and 1×1 are used to replace the original 11×11 large convolution kernel, and delete the LRN layer and a fully connected layer; in order to reduce the over-fitting effect, a dropout optimization is added after each convolution. The LeNet model, the Alexnet model ,the VGG16 model and the GR-Alexnet model were used for comparative experiments on the same data set. Experiments show that the GR-Alexnet model has a certain improvement in recognition accuracy compared with the traditional model, can suppress the over-fitting phenomenon, and has a faster training speed.
Key words : automatic vision detection;OpenCV;gesture recognition;Gesture Recognition AlexNet(GR-AlexNet)

0 引言

隨著人工智能技術的進步,智能化設備逐漸融入到人們生活的方方面面。傳統的醫療檢測儀器逐漸被智能電子儀器所替代,如心率測量儀、血壓檢測儀等,然而視力檢測這一基本的體檢項目仍然沿用傳統的人工檢測方法,檢測效率低,消耗人力且極不方便。隨著計算機視覺技術迅速發展,手勢識別也逐漸成為智能人機交互的重要研究領域[1-4]。本文通過對視力檢測進行手勢識別,達到自動化視力檢測的目的。





本文詳細內容請下載:http://www.viuna.cn/resource/share/2000003422




作者信息:

何啟莉,何家峰,郭  娟

(廣東工業大學  信息工程學院,廣東 廣州510006)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲欧美久久一区二区 | 一道本在线 | 人人艹人人插 | 欧美手机在线视频 | 黄免费在线 | 国产高清专区 | 欧美午夜网站 | 成人免费www在线高清观看 | 国产欧美日本在线观看 | 日韩免费毛片全部不收费 | 福利片在线观看免费高清视频 | 午夜国产精品理论片久久影院 | 日本大黄视频 | 五月激情六月婷婷 | 一区二区三区免费高清视频 | 日韩欧美视频二区 | 在线看片网站 | 成人a视频片在线观看免费 成人a视频高清在线观看 | 国产一区二区影院 | 无遮挡毛片 | 国产成人精品视频播放 | 亚洲三级久久 | 成人免费网站视频www | 农村偷人一级超爽毛片 | 亚洲精品黄色 | 日韩午夜在线观看 | 波多野结衣在线资源 | 曰韩高清一级毛片 | 亚洲国产成人精彩精品 | 1024手机基地在线看手机 | 成人a免费α片在线视频网站 | 国产亚洲精品在天天在线麻豆 | 久热爱精品视频在线观看久爱 | 欧洲性xxx| 国产午夜亚洲精品国产 | 成人免费福利视频 | 日韩a在线| 一级大黄美女免费播放 | 第四色亚洲色图 | 天天爱天天做色综合 | a毛片在线看片免费 |