基于多尺度網絡的絕緣子自曝狀態智能認知方法研究
2021年電子技術應用第8期
萬 濤1,吳立剛1,陸 燁2,王 浩2,張 瀟2,范葉平1,楊德勝1
1.國網信息通信產業集團安徽繼遠軟件有限公司,安徽 合肥230088; 2.國網江蘇省電力公司徐州供電分公司,江蘇 徐州221005
摘要: 針對已有絕緣子狀態識別模型,以及深層網絡尺度和交叉熵損失函數的缺陷,仿照運維人員檢修模式,即依據評測結果的可信度動態決策,基于多尺度網絡構建了一種絕緣子自曝狀態智能認知方法。首先,面向定位歸一化化預處理后的絕緣子圖像,基于ResNet-18增加不同結構的網絡分支提高網絡適應不同分辨率的能力,同時在網絡末端添加多尺度信息融合模塊;其次,隨機配置網絡面向多個尺度特征,構建了泛化的自曝狀態分類認知準則;最后,為了評測自曝狀態分類認知結果的可信度,基于定義的誤差指標自調節多尺度網絡架構,重構不確定認知結果約束下的特征向量和分類認知準則,以進行自曝狀態再認知。實驗結果顯示,與其他方法相比,所提出的智能認知方法增強了模型的泛化能力和認知精度。
中圖分類號: TP391
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200223
中文引用格式: 萬濤,吳立剛,陸燁,等. 基于多尺度網絡的絕緣子自曝狀態智能認知方法研究[J].電子技術應用,2021,47(8):91-96.
英文引用格式: Wan Tao,Wu Ligang,Lu Ye,et al. Research on intelligent cognition method of insulator self-blast state based on multi-scale network[J]. Application of Electronic Technique,2021,47(8):91-96.
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200223
中文引用格式: 萬濤,吳立剛,陸燁,等. 基于多尺度網絡的絕緣子自曝狀態智能認知方法研究[J].電子技術應用,2021,47(8):91-96.
英文引用格式: Wan Tao,Wu Ligang,Lu Ye,et al. Research on intelligent cognition method of insulator self-blast state based on multi-scale network[J]. Application of Electronic Technique,2021,47(8):91-96.
Research on intelligent cognition method of insulator self-blast state based on multi-scale network
Wan Tao1,Wu Ligang1,Lu Ye2,Wang Hao2,Zhang Xiao2,Fan Yeping1,Yang Desheng1
1.Anhui Jiyuan Software Co.,Ltd.,State Grid Communication Industry Group Co.,Ltd.,Hefei 230088,China; 2.State Grid Xuzhou Electric Power Supply Company,Xuzhou 221005,China
Abstract: In view of the drawbacks of the existing insulator state recognition models, and the scale and softmax loss function of deep network, imitating the mode of personnel operation and maintenance, that is, dynamic decision-making based on the credibility of the evaluation results, this paper constructs an intelligent cognition method of insulator self-blast states based on the multi-scale network. Firstly, for the pre-processed insulator images with localization and normalization, based on ResNet-18, branches with different network structure are added to improve the network ability to adapt to different resolutions. At the same time, the multi-scale information fusion module is added at the end of the network. Secondly, facing multiple scale features, stochastic configuration network(SCN) constructs a generalized cognition criterion of self-blast state classification. Finally, in order to evaluate the credibility of the self-blast state cognition result, based on the defined error index, the multi-scale network architecture is self-adjusted to reconstruct the feature vector and classification cognition criterion under the constraint of the uncertain cognition result, which carries out the self-blast state renewal cognition.The experimental results show that the proposed intelligent cognition method enhances the generalization ability and cognition accuracy compared with other methods.
Key words : insulator state;ResNet;feedback cognition;multi-resolution;multi-scale
0 引言
絕緣子作為輸電電路中的重要器件,被安裝在非等電位或導體與接地器件之間,其自爆與否會嚴重影響輸電線路的安全[1-3]。現代輸電線路運維檢修機制通?;谥鄙龣C或無人機按照預定軌跡拍攝的視頻,由人對每幀圖像進行自爆絕緣子位置辨識。然而,人的主觀因素,以及運維成本和復雜環境的客觀因素,使得現代輸電線路運維檢修模式費時耗力。因此,亟待研究絕緣子自曝狀態的智能認知方法。
本文詳細內容請下載:http://www.viuna.cn/resource/share/2000003708。
作者信息:
萬 濤1,吳立剛1,陸 燁2,王 浩2,張 瀟2,范葉平1,楊德勝1
(1.國網信息通信產業集團安徽繼遠軟件有限公司,安徽 合肥230088;
2.國網江蘇省電力公司徐州供電分公司,江蘇 徐州221005)
此內容為AET網站原創,未經授權禁止轉載。