《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于生成對抗網(wǎng)絡(luò)的無監(jiān)督圖像超分辨率算法
基于生成對抗網(wǎng)絡(luò)的無監(jiān)督圖像超分辨率算法
信息技術(shù)與網(wǎng)絡(luò)安全 1期
趙志博,滕奇志,任 超,何小海,翟 森
(四川大學(xué) 電子信息學(xué)院,四川 成都610065)
摘要: 目前,大多數(shù)基于學(xué)習(xí)的圖像超分辨率研究通常采用預(yù)定的降質(zhì)類型(比如雙三次下采樣)處理高分辨率圖像,來產(chǎn)生成對的訓(xùn)練集。然而,真實圖像往往存在未知的模糊和噪聲,導(dǎo)致這些算法無法有效應(yīng)用到真實場景中。為了實現(xiàn)真實圖像的超分辨率重建,提出了一種基于生成對抗網(wǎng)絡(luò)的無監(jiān)督圖像超分辨率算法,所提出的算法分為域轉(zhuǎn)換子網(wǎng)絡(luò)和重建子網(wǎng)絡(luò)兩個部分。同時設(shè)計了深度特征提取模塊,通過融合不同感受野所提取的圖像特征來提升網(wǎng)絡(luò)的性能。實驗結(jié)果證明,相比于目前多數(shù)的圖像超分辨率算法,本文算法能夠?qū)崿F(xiàn)真實降質(zhì)圖像(存在噪聲、模糊等)的圖像超分辨率,在主觀效果和客觀指標(biāo)上均能獲得更好的性能。
中圖分類號: TP183;TP391
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.01.009
引用格式: 趙志博,滕奇志,任超,等. 基于生成對抗網(wǎng)絡(luò)的無監(jiān)督圖像超分辨率算法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2022,41(1):55-62.
Unsupervised image super-resolution algorithm based on Generative Adversarial Network
Zhao Zhibo,Teng Qizhi,Ren Chao,He Xiaohai,Zhai Sen
(College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China)
Abstract: In most existing researches on learning-based image super-resolution, the pair of training datasets is generated by down-scaling high-resolution(HR) images through a predetermined operation(e.g.,bicubic down-sampling). However, these algorithms cannot be effectively applied to real scenes since the real-world image contains unknown noise and blur. To this end, we propose an unsupervised image super-resolution algorithm based on Generative Adversarial Network in this paper. Our method contains two parts: domain conversion sub-network and reconstruction sub-network. In addition, the deep feature extraction module is proposed to improve the performance of the network by merging the image features captured by different receptive fields. Extensive experiments illustrate that compared with most current image super-resolution algorithms, the proposed method can be applied to real-world image (containing noise, blur, etc.) super-resolution, and achieves the start-of-the-art(SOTA) performance on both subjective and objective evaluations.
Key words : real-world image super-resolution;domain conversion;Generative Adversarial Network;unsupervised training

0 引言

圖像是信息的重要載體,隨著數(shù)字圖像在醫(yī)學(xué)、監(jiān)控、遙感等領(lǐng)域的迅速發(fā)展,人們對圖像質(zhì)量的要求也越來越高。然而在實際的圖像獲取過程中,比如在視頻監(jiān)控領(lǐng)域,由于成像設(shè)備的限制,無法獲得滿足實際需求的更高空間分辨率的圖像,不利于后續(xù)對圖像信息的進(jìn)一步分析。同時,在成像過程中由于受到成像條件等一系列因素影響,導(dǎo)致獲取的圖像存在一定程度的模糊和噪聲,顯著影響了圖像的質(zhì)量。圖像超分辨率重建技術(shù)可以在不需要改變現(xiàn)有成像設(shè)備等條件的前提下,根據(jù)低質(zhì)量(Low Quality,LQ)圖像重建出理想的高質(zhì)量(High Quality,HQ)圖像,在成本、實時性以及便利性等方面具有顯著的優(yōu)勢,已經(jīng)成為了數(shù)字圖像處理技術(shù)的主要研究內(nèi)容。一般來說,LQ圖像的退化模型可以描述為:

y=Px+n(1)

其中,y和x分別表示LQ圖像與對應(yīng)的HQ圖像,P表示圖像的退化矩陣,n代表圖像噪聲。因此,如果要重建出理想的HQ圖像,必須綜合考慮模糊和噪聲等影響圖像質(zhì)量的因素。



本文詳細(xì)內(nèi)容請下載:http://www.viuna.cn/resource/share/2000003937






作者信息:

趙志博,滕奇志,任  超,何小海,翟  森

(四川大學(xué) 電子信息學(xué)院,四川 成都610065)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 高清影院|精品秒播3 | 99成人免费视频 | 韩国伦理片手机在线观看 | 老扒夜夜春宵粗大好爽aa毛片 | 又黄又变态又免费的视频 | 日本人免费xxx在线视频 | 天天操天天摸天天干 | 日韩免费影院 | 日本综合欧美一区二区三区 | 精品国产欧美 | 精品免费在线视频 | www.黄色片.com | 狠狠的撞进去嗯啊h女强男视频 | 羞羞视频在线观看视频 | 日本中文字幕网站 | 国产精品久久久久久久人人看 | 国产初高中生粉嫩无套第一次 | 不卡视频一区二区 | 欧美视频免费在线 | 99久久中文字幕伊人 | 中文字幕免费在线播放 | 成人免费www在线高清观看 | 最近免费中文字幕大全高清大全1 | 日韩成人小视频 | 曰鲁夜鲁鲁狠狠综合 | 日本一区二区高清免费不卡 | 久久久噜久噜久久综合 | 亚洲欧美日韩在线播放 | 天天爽夜夜爽人人爽曰喷水 | 亚洲一区二区三区成人 | 成年男人永久免费看片 | 日韩免费视频观看 | 久久国产成人精品国产成人亚洲 | 一级做a爰全过程免费视频 一级做a爰片鸭王 | 香蕉99国内自产自拍视频 | 91视频欧美 | 乡下女色又黄一级毛片 | 狠狠色丁香九九婷婷综合五月 | 欧美一级高清片 | 欧美理伦 | 色综合狠狠干 |