使用Xcelium Machine Learning技術加速驗證覆蓋率收斂
2023年電子技術應用第8期
植玉1,馬業欣1,徐嶸2
(1.深圳市中興微電子技術有限公司,廣東 深圳 518054;2.楷登企業管理(上海)有限公司深圳分公司,廣東 深圳 518000)
摘要: 隨著設計越來越復雜,受約束的隨機化驗證方法已成為驗證的主流方法。一般地,驗證激勵做到不違反spec描述條件下盡量隨機,這樣驗證能跑到的空間才更充分。但是,這給功能覆蓋率收斂帶來極大挑戰,為解決這一難題,Cadence率先推出了仿真器的機器學習功能——Xcelium Machine Learning,采用機器學習技術讓功能覆蓋率快速收斂,大大提高驗證仿真效率。介紹了Xcelium Machine Learning的使用流程,并給出在相同模擬(simulation)驗證環境下應用Machine Learning前后情況對比。最后Machine Learning在模擬(simulation)驗證中的應用前景進行了展望。
中圖分類號:TN402 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.239805
中文引用格式: 植玉,馬業欣,徐嶸. 使用Xcelium Machine Learning技術加速驗證覆蓋率收斂[J]. 電子技術應用,2023,49(8):19-23.
英文引用格式: Zhi Yu,Ma Yexin,Xu Rong. Accelerating verification coverage convergence using Xcelium Machine Learning technology[J]. Application of Electronic Technique,2023,49(8):19-23.
中文引用格式: 植玉,馬業欣,徐嶸. 使用Xcelium Machine Learning技術加速驗證覆蓋率收斂[J]. 電子技術應用,2023,49(8):19-23.
英文引用格式: Zhi Yu,Ma Yexin,Xu Rong. Accelerating verification coverage convergence using Xcelium Machine Learning technology[J]. Application of Electronic Technique,2023,49(8):19-23.
Accelerating verification coverage convergence using Xcelium Machine Learning technology
Zhi Yu1,Ma Yexin1,Xu Rong2
(1.Shenzhen Sanechips Technology Co., Ltd., Shenzhen 518054,China;2.Cadence Design Systems, Shenzhen 518000,China)
Abstract: As designs become more complex, constrained randomized verification methods have become the mainstream method for verification. Generally, the verification incentive should be as random as possible without violating the spec description condition, so that the space that the verification can cover is more sufficient. However, this brings great challenges to the convergence of functional coverage. To solve this problem, Cadence pioneered the machine learning function of the simulator - Xcelium Machine Learning, which uses machine learning technology to quickly converge the functional coverage and greatly improve the efficiency of verification simulation. This article mainly introduces the process of using Xcelium Machine Learning and gives a comparison before and after using machine learning in the same simulation verification environment. Finally, the application prospect of machine learning in simulation verification is prospected.
Key words : random test;constrained random;functional coverage;machine learning;simulation
0 引言
覆蓋率驅動的隨機測試生成方法是目前隨機測試生成技術研究的熱點,其目標是為了提高驗證的自動化程度,加快驗證收斂過程,提高驗證效率,即通過覆蓋率指導測試向量生成,進一步減少重復測試向量,加速功能驗證收斂[1]。
如圖1所示,通常地,為加快覆蓋率收斂,驗證人員根據覆蓋率分析結果,找到相關隨機點乃至隨機變量進行分析,然后合理地調整隨機變量的相應約束,反復迭代以達成覆蓋率收斂的目標。這樣做,存在三個問題:(1)浪費人力,重復的事情本應留給程序去做而人來做了;(2)陷入驗證方法學應用誤區,驗證方法的天平嚴重偏向了定向驗證,隨機激勵隨機力度不夠;(3)增加漏測風險,壓縮了隨機空間,可能會導致存在缺陷的空間未能隨機到而錯過發現缺陷的機會。
本文詳細內容請下載:http://www.viuna.cn/resource/share/2000005480
作者信息:
植玉1,馬業欣1,徐嶸2
(1.深圳市中興微電子技術有限公司,廣東 深圳 518054;2.楷登企業管理(上海)有限公司深圳分公司,廣東 深圳 518000)
此內容為AET網站原創,未經授權禁止轉載。