基于圖像識別的用電安全檢查子系統設計與實現*
電子技術應用 2023年10期
劉禹澤,潘明明,鄒 華,王白根,王 歐,趙 騫,劉輝舟
(1.北京郵電大學 網絡與交換技術國家重點實驗室,北京 100876;2.中國電力科學研究院有限公司,北京 100192; 3.國網安徽省電力有限公司安慶供電公司,安徽 安慶246000;4.國網安徽省電力有限公司,安徽 合肥230061)
摘要: 用電安全檢查是保障電網正常運行的重要途徑,傳統的用電安全檢查主要依賴人工的形式對存在安全隱患的場所、設備進行逐一排查。隨著人工智能技術的發展,基于圖像數據的智能分析可協助及時排查相關安全隱患,也可減少對于檢查人員的經驗要求,在提升效率的同時,保障安全檢查準確性。為了更好地提升用電安全檢查的準確性,提出了基于YOLO神經網絡的用電隱患識別算法,該算法可對用電設備的指示燈進行識別,并與正常狀態進行比對,發現異常狀態及時發出告警信息。基于該算法,還設計并實現了基于圖像識別的用電安全檢查子系統。通過實際數據驗證,系統對設備指示燈狀態不一致性檢測等可達到較高水平,滿足對用電安全檢查的需求。
中圖分類號:TM71 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.234109
中文引用格式: 劉禹澤,潘明明,鄒華,等. 基于圖像識別的用電安全檢查子系統設計與實現[J]. 電子技術應用,2023,49(10):23-28.
英文引用格式: Liu Yuze,Pan Mingming,Zou Hua,et al. Design and implementation of electricity safety inspection subsystem based on monitoring image data[J]. Application of Electronic Technique,2023,49(10):23-28.
中文引用格式: 劉禹澤,潘明明,鄒華,等. 基于圖像識別的用電安全檢查子系統設計與實現[J]. 電子技術應用,2023,49(10):23-28.
英文引用格式: Liu Yuze,Pan Mingming,Zou Hua,et al. Design and implementation of electricity safety inspection subsystem based on monitoring image data[J]. Application of Electronic Technique,2023,49(10):23-28.
Design and implementation of electricity safety inspection subsystem based on monitoring image data
Liu Yuze1,Pan Mingming2,Zou Hua1,Wang Baigen3,Wang Ou3,Zhao Qian4,Liu Huizhou4
(1.State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;2.China Electric Power Research Institute, Beijing 100192, China; 3.Anqing Power Supply Company of State Grid Anhui Electric Power Co., Ltd., Anqing 246000, China; 4.State Grid Anhui Electric Power Co., Ltd., Hefei 230061, China)
Abstract: Electricity safety inspection is an important way to ensure the normal operation of the power grid. Traditional electricity safety inspection mainly relies on manual inspection of places and equipment with safety hazards one by one. With the development of artificial intelligence technology, intelligent analysis based on image data can assist in timely identification of relevant safety hazards, reduce the experience requirements for inspectors, and improve efficiency while ensuring the accuracy of safety inspections. In order to better improve the accuracy of electricity safety inspection, the article proposes an electricity hazard identification algorithm based on YOLO neural network, which can dynamically identify the indicator lights of electrical equipment and compare them with normal states, and promptly issue alarm messages when abnormal states are found. Based on this algorithm, the article also designed and implemented an electricity safety inspection subsystem based on image recognition. Through actual data validation, the system can achieve a high level of inconsistent detection of equipment indicator status, meeting the demand for electricity safety inspection.
Key words : target detection algorithm;electricity safety inspection sub system;image recognition
0 引言
工業企業價值鏈是指將原材料轉化為最終產品或服務的整個過程,包括從產品設計、原材料采購、生產制造、銷售與分銷等環節,用電安全檢查事關生產制造這個重要環節,保證工業企業價值鏈正常運作。
2020年4月,國務院安全生產委員會印發了《全國安全生產專項整治三年行動計劃》,明確要求各地區、各企業全面排查現有風險,認真辨識、科學評估,從而制定有效的防控措施。客戶安全用電檢查服務是政府賦予電網企業的基本職責,國家電網有限公司全面貫徹國務院安委會《全國安全生產專項整治三年行動計劃》,進一步提升客戶用電安全管理水平,服務客戶保障用電安全。
目前,安全用電檢查工具無法確保現場人員完整按照標準作業流程對設備、人員、管理安全隱患檢查進行全面檢查和評價,容易存在管理盲區,難以及時識別風險。主要體現為缺乏智能識別工具,難以實時對現場進行記錄、測量及輔助判定。典型如作業人員在現場觀察相關設備狀態時,出現人工錯誤,對用電設備存在的安全隱患產生漏判等。
為了解決上述問題,本文擬借助移動終端攝像頭的拍攝能力以及后臺的處理能力提出一種基于圖像識別的用電安全檢查子系統。該系統將改變現有安全用電檢查的現狀,實現安全檢查作業現場數據狀態與后臺實時比對,實現用電安全檢查的智能化。
本文詳細內容請下載:http://www.viuna.cn/resource/share/2000005708
作者信息:
劉禹澤1,潘明明2,鄒華1,王白根3,王歐3,趙騫4,劉輝舟4
(1.北京郵電大學 網絡與交換技術國家重點實驗室,北京 100876;2.中國電力科學研究院有限公司,北京 100192;
3.國網安徽省電力有限公司安慶供電公司,安徽 安慶246000;4.國網安徽省電力有限公司,安徽 合肥230061)
此內容為AET網站原創,未經授權禁止轉載。